The Role of High Damage Rates on Cavity Nucleation with Co-Injected Helium in Dual Ion Irradiated T91 Steel

Stephen Taller, Zhijie Jiao, Gary S. Was

Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI, US

High fidelity emulation of neutron irradiation microstructures using ion beams requires understanding the influence of helium and high damage rates on the irradiated microstructure. However, a single ion beam cannot account for the effects of transmutation-produced helium which strongly influences the evolution of the microstructure of irradiated materials. Irradiations using 5 MeV Fe²⁺ ions to induce damage with co-injected He²⁺ to simulate transmutation gas buildup were performed at the Michigan Ion Beam Laboratory on a ferritic-martensitic alloy, T91. Irradiations were performed up to 35 dpa at 600 nm depth at 445°C with damage rates spanning from 5 x 10⁻⁵ to 3 x 10⁻³ dpa/s with a helium co-implantation rate of ~4 appm He/dpa. Additional irradiations were conducted to isolate the effect of helium co-implantation on cavity nucleation at 7-8 x 10⁻⁴ dpa/s to 16.6 dpa at 600 nm depth at 445°C with zero helium co-implantation, a low helium co-implantation rate of 0.02 appm He/dpa, an intermediate helium co-implantation rate of 0.22 appm He/dpa or a high helium co-implantation rate of ~4 appm He/dpa. Cavities and dislocation loops were characterized using scanning transmission electron microscopy (STEM) to understand the evolution of the irradiated microstructure with damage rate and helium co-implantation rate. No significant differences were observed in the average dislocation loop diameter or density within these damage rates or helium co-injection rates. A bimodal cavity distribution was observed consisting of high densities of small (< 2 nm diameter) bubbles and a wider distribution of cavities with diameter > 2 nm. The density of bubbles and cavities showed a strong dependence on the He/dpa ratio with increasing density of bubbles and cavities with increasing He/dpa ratio. The average cavity diameter at 16.6 dpa was the same across He/dpa ratios. Very few cavities were observed without helium co-implantation at these damage rates and damage levels, highlighting the strong impact of helium on cavity nucleation. For an increasing damage rate at the same temperature and He/dpa ratio, the bubble density increased while both the cavity density and diameter decreased. These trends are discussed in the context of the critical bubble model of cavity nucleation.