Steam Oxidation Dynamics of Alloyed U₃Si₂+X (X=Al, Cr, Nb, Y, and Zr)

Elizabeth Sooby Wood¹, Cole Moczygemba¹, Geronimo Robles¹, Sean Nesloney¹, Christopher Grote², Lu Cai³, and Edward Lahoda³

¹ The Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX ² Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM ³ Westinghouse Electric Company LLC

Uranium silicides have proven of interest as advanced technology reactor fuels due to their enhanced thermal conductivity and high uranium density (U_3Si and U_3Si_2) compared to traditional UO_2 . However, susceptibility to oxidation and wash out, in the event of a cladding breech, could limit the potential for deployment of silicides as accident tolerant fuels. Mitigating the water reaction for U_3Si_2 could enable its use as an accident tolerant, high uranium density fuel or as a composite fuel constituent. Presented will be the steam oxidation behavior of U_3Si_2 alloyed with Al, Cr, Y, Nb, and Zr ranging from 2-12 volume percent alongside screening data for unalloyed U_3Si_2 and UO_2 . It has been identified that at alloying levels above 6vol%, the steam oxidation dynamics are altered, from non-alloyed U_3Si_2 , under thermally ramped conditions. The modified reaction kinetics for the alloyed compositions will be presented and discussed. Additionally, the microstructural degradation of the alloyed compositions and x-ray power diffraction patterns of the oxidation products will be presented.